Math Maniac's Musings

A Python Notebook with Sympy.

Sympy (Symbolic Python)

The equation $$\int_a^b f(x)\,dx = \lim_{n\rightarrow\infty} \sum_{i=1}^n f(x_i^*)\Delta x$$ defines the definite integral over the interval $[a,b]$.

In [16]:
from sympy import init_session
init_session()
IPython console for SymPy 0.7.5 (Python 2.7.6-64-bit) (ground types: python)

These commands were executed:
>>> from __future__ import division
>>> from sympy import *
>>> x, y, z, t = symbols('x y z t')
>>> k, m, n = symbols('k m n', integer=True)
>>> f, g, h = symbols('f g h', cls=Function)

Documentation can be found at http://www.sympy.org

WARNING: Hook shutdown_hook is deprecated. Use the atexit module instead.

In [4]:
Integral(x**2/(x+1),(x,0,5))
Out[4]:
$$\int_{0}^{5} \frac{x^{2}}{x + 1}\, dx$$
In [5]:
simplify(sin(x)**2 + cos(x)**2)
Out[5]:
$$1$$
In [7]:
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))
Out[7]:
$$x - 1$$
In [8]:
simplify(gamma(x)/gamma(x - 2))
Out[8]:
$$\left(x - 2\right) \left(x - 1\right)$$
In [9]:
simplify(x**2 + 2*x + 1)
Out[9]:
$$x^{2} + 2 x + 1$$
In [10]:
factor(x**3 - 3*x**2 + 2*x - 5)
Out[10]:
$$x^{3} - 3 x^{2} + 2 x - 5$$
In [6]:
expr = (x - 2)*(2*x + 3)*(3*x - 4)*(7*x + 9)
In [7]:
expand(expr)
Out[7]:
$$42 x^{4} - 23 x^{3} - 197 x^{2} + 42 x + 216$$
In [8]:
factor(expand(expr))
Out[8]:
$$\left(x - 2\right) \left(2 x + 3\right) \left(3 x - 4\right) \left(7 x + 9\right)$$
In [14]:
expand((x + 1)*(x - 2) - (x - 1)*x)
Out[14]:
$$-2$$
In [9]:
factor(x**3 - x**2 + x - 1)
Out[9]:
$$\left(x - 1\right) \left(x^{2} + 1\right)$$
In [16]:
factor(x**2*z + 4*x*y*z + 4*y**2*z)
Out[16]:
$$z \left(x + 2 y\right)^{2}$$
In [17]:
factor_list(x**2*z + 4*x*y*z + 4*y**2*z)
Out[17]:
$$\begin{pmatrix}1, & \begin{bmatrix}\begin{pmatrix}z, & 1\end{pmatrix}, & \begin{pmatrix}x + 2 y, & 2\end{pmatrix}\end{bmatrix}\end{pmatrix}$$
In [18]:
expr = expand((cos(x) + sin(x))**2)
In [19]:
expr
Out[19]:
$$\sin^{2}{\left (x \right )} + 2 \sin{\left (x \right )} \cos{\left (x \right )} + \cos^{2}{\left (x \right )}$$
In [20]:
factor(expr)
Out[20]:
$$\left(\sin{\left (x \right )} + \cos{\left (x \right )}\right)^{2}$$
In [21]:
expr = x*y + x - 3 + 2*x**2 - z*x**2 + x**3
In [22]:
expr
Out[22]:
$$x^{3} - x^{2} z + 2 x^{2} + x y + x - 3$$
In [23]:
collected_expr = collect(expr, x)
collected_expr
Out[23]:
$$x^{3} + x^{2} \left(- z + 2\right) + x \left(y + 1\right) - 3$$
In [24]:
collected_expr.coeff(x,2)
Out[24]:
$$- z + 2$$
In [25]:
cancel((x**2 + 2*x + 1)/(x**2 + x))
Out[25]:
$$\frac{1}{x} \left(x + 1\right)$$
In [26]:
expr = 1/x + (3*x/2 - 2)/(x - 4)
In [27]:
expr
Out[27]:
$$\frac{\frac{3 x}{2} - 2}{x - 4} + \frac{1}{x}$$
In [28]:
cancel(expr)
Out[28]:
$$\frac{3 x^{2} - 2 x - 8}{2 x^{2} - 8 x}$$
In [29]:
expr = (x*y**2 - 2*x*y*z + x*z**2 + y**2 - 2*y*z + z**2)/(x**2 - 1)
expr
Out[29]:
$$\frac{1}{x^{2} - 1} \left(x y^{2} - 2 x y z + x z^{2} + y^{2} - 2 y z + z^{2}\right)$$
In [30]:
cancel(expr)
Out[30]:
$$\frac{1}{x - 1} \left(y^{2} - 2 y z + z^{2}\right)$$
In [31]:
factor(expr)
Out[31]:
$$\frac{\left(y - z\right)^{2}}{x - 1}$$
In [32]:
expr = (4*x**3 + 21*x**2 + 10*x + 12)/(x**4 + 5*x**3 + 5*x**2 + 4*x)
expr
Out[32]:
$$\frac{4 x^{3} + 21 x^{2} + 10 x + 12}{x^{4} + 5 x^{3} + 5 x^{2} + 4 x}$$
In [33]:
apart(expr)
Out[33]:
$$\frac{2 x - 1}{x^{2} + x + 1} - \frac{1}{x + 4} + \frac{3}{x}$$
In [34]:
cancel(Out[33])
Out[34]:
$$\frac{4 x^{3} + 21 x^{2} + 10 x + 12}{x^{4} + 5 x^{3} + 5 x^{2} + 4 x}$$
In [35]:
acos(x)
Out[35]:
$$\operatorname{acos}{\left (x \right )}$$
In [36]:
cos(acos(x))
Out[36]:
$$x$$
In [10]:
acos(cos(-5*pi/4))
Out[10]:
$$\frac{3 \pi}{4}$$
In [39]:
asin(1)
Out[39]:
$$\frac{\pi}{2}$$
In [40]:
trigsimp(sin(x)**2 + cos(x)**2)
Out[40]:
$$1$$
In [41]:
expand_trig(sin(x + y))
Out[41]:
$$\sin{\left (x \right )} \cos{\left (y \right )} + \sin{\left (y \right )} \cos{\left (x \right )}$$
In [42]:
expand_trig(cos(2*x))
Out[42]:
$$2 \cos^{2}{\left (x \right )} - 1$$
In [43]:
Out[42].subs(cos(x)**2,1-sin(x)**2)
Out[43]:
$$- 2 \sin^{2}{\left (x \right )} + 1$$
In [11]:
x, y = symbols('x y', positive=True)
a, b = symbols('a b', real=True)
z, t, c = symbols('z t c')
In [12]:
sqrt(x) == x**Rational(1, 2)
Out[12]:
True
In [13]:
powsimp(x**a*x**b)
Out[13]:
$$x^{a + b}$$
In [14]:
powsimp(x**a*y**a)
Out[14]:
$$\left(x y\right)^{a}$$
In [49]:
powsimp(t**c*z**c)
Out[49]:
$$t^{c} z^{c}$$
In [50]:
powsimp(t**c*z**c, force=True)
Out[50]:
$$\left(t z\right)^{c}$$
In [51]:
(z*t)**2
Out[51]:
$$t^{2} z^{2}$$
In [52]:
sqrt(x*y)
Out[52]:
$$\sqrt{x} \sqrt{y}$$
In [53]:
x, y, z = symbols('x y z')
k, m, n = symbols('k m n')
In [54]:
binomial(n, k)
Out[54]:
$${\binom{n}{k}}$$
In [55]:
hyper([1, 2], [3], z)
Out[55]:
$${{}_{2}F_{1}\left(\begin{matrix} 1, 2 \\ 3 \end{matrix}\middle| {z} \right)}$$
In [60]:
cosh(x).rewrite(exp)
Out[60]:
$$\frac{e^{x}}{2} + \frac{e^{- x}}{2}$$
In [61]:
acosh(x).rewrite(log)
Out[61]:
$$\operatorname{acosh}{\left (x \right )}$$
In [15]:
def list_to_frac(l):
    expr = Integer(0)
    for i in reversed(l[1:]):
        expr += i
        expr = 1/expr
    return l[0] + expr
In [16]:
list_to_frac([x,y,z])
Out[16]:
$$x + \frac{1}{y + \frac{1}{z}}$$
In [17]:
list_to_frac([1,2,3,4])
Out[17]:
$$\frac{43}{30}$$
In [18]:
list_to_frac([1,1,1,1,1,1,1]).evalf()
Out[18]:
$$1.61538461538462$$
In [72]:
l = [1,2,3,4,5]
l
Out[72]:
$$\begin{bmatrix}1, & 2, & 3, & 4, & 5\end{bmatrix}$$
In [79]:
l
Out[79]:
$$\begin{bmatrix}5, & 4, & 3, & 2, & 1\end{bmatrix}$$
In [81]:
l[1:]
Out[81]:
$$\begin{bmatrix}4, & 3, & 2, & 1\end{bmatrix}$$
In [126]:
x, y, z = symbols('x y z')
In [127]:
diff(cos(x),x)
Out[127]:
$$- \sin{\left (x \right )}$$
In [84]:
diff(exp(x**2),x)
Out[84]:
$$2 x e^{x^{2}}$$
In [94]:
diff(y*exp(x**2),x,y)
Out[94]:
$$2 x e^{x^{2}}$$
In [96]:
diff(sin(y)*exp(x**2),x,y,y,x,5)
Out[96]:
$$- 8 \left(8 x^{6} + 60 x^{4} + 90 x^{2} + 15\right) e^{x^{2}} \sin{\left (y \right )}$$
In [97]:
integrate(cos(x),x)
Out[97]:
$$\sin{\left (x \right )}$$
In [98]:
integrate(x*cos(x),)
Out[98]:
$$x \sin{\left (x \right )} + \cos{\left (x \right )}$$
In [19]:
integrate(x*cos(x**2),x)
Out[19]:
$$\frac{1}{2} \sin{\left (x^{2} \right )}$$
In [20]:
integrate(exp(-x), (x,0,oo))
Out[20]:
$$1$$
In [21]:
integrate(exp(-x**2 - y**2), (x,-oo,oo),(y,-oo,oo))
Out[21]:
$$\pi$$
In [106]:
expr = integrate(exp(exp(x)),x)
In [107]:
print expr
Integral(exp(exp(x)), x)

In [108]:
expr
Out[108]:
$$\int e^{e^{x}}\, dx$$
In [22]:
expr = Integral(log(x)**2,x)
expr
Out[22]:
$$\int \log^{2}{\left (x \right )}\, dx$$
In [23]:
expr.doit()
Out[23]:
$$x \log^{2}{\left (x \right )} - 2 x \log{\left (x \right )} + 2 x$$
In [111]:
integ = Integral(sin(x**2), x)
integ
Out[111]:
$$\int \sin{\left (x^{2} \right )}\, dx$$
In [112]:
integ.doit()
Out[112]:
$$\frac{3 \sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{8 \Gamma{\left(\frac{7}{4} \right)}} \Gamma{\left(\frac{3}{4} \right)}$$
In [15]:
integ = Integral(x**y*exp(-x), (x, 0, oo))
integ
Out[15]:
$$\int_{0}^{\infty} x^{y} e^{- x}\, dx$$
In [16]:
integ.doit()
Out[16]:
$$\begin{cases} \Gamma{\left(y + 1 \right)} & \text{for}\: - \Re{y} < 1 \\\int_{0}^{\infty} x^{y} e^{- x}\, dx & \text{otherwise} \end{cases}$$
In [115]:
expr = x**2/exp(x)
expr.subs(x,oo)
Out[115]:
$$\mathrm{NaN}$$
In [116]:
limit(expr,x,oo)
Out[116]:
$$0$$
In [117]:
limit(1/x, x, 0, '+')
Out[117]:
$$\infty$$
In [125]:
limit(1/x, x, 0, '-')
Out[125]:
$$-\infty$$
In [24]:
r, theta, a, b = symbols('r, theta a b')
In [25]:
ans = integrate(sqrt(b**2-r**2)*r,(r,a,b),(theta,0,2*pi))
In [26]:
ans
Out[26]:
$$2 \pi \left(- \frac{a^{2}}{3} \sqrt{- a^{2} + b^{2}} + \frac{b^{2}}{3} \sqrt{- a^{2} + b^{2}}\right)$$
In [27]:
factor(ans)
Out[27]:
$$\frac{2 \pi}{3} \left(- \left(a - b\right) \left(a + b\right)\right)^{\frac{3}{2}}$$
In [11]:
x = symbols('x')
In [32]:
integrate(x*sqrt(x-1),x)
Out[32]:
$$\begin{cases} \frac{2 x^{2}}{5} \sqrt{x - 1} - \frac{2 x}{15} \sqrt{x - 1} - \frac{4}{15} \sqrt{x - 1} & \text{for}\: \left\lvert{x}\right\rvert > 1 \\\frac{2 i}{5} x^{2} \sqrt{- x + 1} - \frac{2 i}{15} x \sqrt{- x + 1} - \frac{4 i}{15} \sqrt{- x + 1} & \text{otherwise} \end{cases}$$
In [39]:
x = symbols('x')
myint = Integral(x*sqrt(x-1),(x,2,5))
In [28]:
(log(-4) + acos(3)).evalf(5)
Out[28]:
$$1.3863 + 4.9043 i$$
In [37]:
sqrt(2).evalf(30)
Out[37]:
$$1.41421356237309504880168872421$$
In [4]:
Rational(1,2) + Rational(1,3)
Out[4]:
$$\frac{5}{6}$$
In [6]:
expand((x+y)**5)
Out[6]:
$$x^{5} + 5 x^{4} y + 10 x^{3} y^{2} + 10 x^{2} y^{3} + 5 x y^{4} + y^{5}$$
In [9]:
trigsimp(sin(x)/cos(x))
Out[9]:
$$\tan{\left (x \right )}$$
In [10]:
limit(x**x,x,0)
Out[10]:
$$1$$
In [11]:
limit(sin(x)/x,x,0)
Out[11]:
$$1$$
In [12]:
diff(log(x),x)
Out[12]:
$$\frac{1}{x}$$
In [18]:
integrate(x**3, (x,-oo,0))
Out[18]:
$$-\infty$$
In [19]:
integrate(exp(-x**2),(x,-oo,oo))
Out[19]:
$$\sqrt{\pi}$$
In [36]:
factor(x**3 - x**2 + x + 1)
Out[36]:
$$x^{3} - x^{2} + x + 1$$
In [32]:
factor(x**2 + 1, extension=[I])
Out[32]:
$$\left(x - i\right) \left(x + i\right)$$
In [64]:
diff(y(x)**2-5*sin(x),x)
Out[64]:
$$2 y{\left (x \right )} \frac{d}{d x} y{\left (x \right )} - 5 \cos{\left (x \right )}$$
In [67]:
solve(Out[64],cos(x))
Out[67]:
[2*y(x)*Derivative(y(x), x)/5]
In [66]:
init_printing(pretty_print=False)
In [68]:
solve(Out[64],Derivative(y(x),x))
Out[68]:
[5*cos(x)/(2*y(x))]
In [69]:
yp = Out[68]
In [74]:
yp[0].subs([(y(x),3),(x,4)])
Out[74]:
5*cos(4)/6
In [2]:
integrate(x*y,(z,0,10-10*x-5*y/2),(y,0,4-4*x),(x,0,1))
Out[2]:
$$\frac{4}{3}$$
In [3]:
integrate(x*y,(z,0,10-10*x-5*y/2),(x,0,1-y/4),(y,0,4))
Out[3]:
$$\frac{4}{3}$$
In [13]:
solve(diff(12*x**5+60*x**4-100*x**3+2,x,2),x)
Out[13]:
$$\begin{bmatrix}0, & - \frac{3}{2} + \frac{\sqrt{19}}{2}, & - \frac{\sqrt{19}}{2} - \frac{3}{2}\end{bmatrix}$$
In [22]:
solns=solve(x**3 - 3*x**2 + 5*x - 7, x)
In [104]:
for soln in solve(x**3 - 3*x**2 + 5*x - 7, x):
    print soln.evalf(5),
0.41025 - 1.7445*I 0.41025 + 1.7445*I 2.1795

In [46]:
for soln in solns:
    print soln.evalf(5),
0.41025 - 1.7445*I 0.41025 + 1.7445*I 2.1795

In [105]:
diff(y**2*x**2,x)
Out[105]:
$$2 x \left(- \frac{g m}{k} t + \frac{m}{k^{2}} \left(1 - e^{- \frac{k t}{m}}\right) \left(g m + k v_{0} \sin{\left (th \right )}\right)\right)^{2}$$
In [48]:
m, k, g, v0, th, t= symbols('m k g v0 th t')
y = m/k*((g*m + v0*k*sin(th))/k)*(1 - exp(-k*t/m)) - m*g*t/k
In [50]:
yp=diff(y,t)
In [51]:
yp.subs()
Out[51]:
$$- \frac{g m}{k} + \frac{1}{k} \left(g m + k v_{0} \sin{\left (th \right )}\right) e^{- \frac{k t}{m}}$$
In [52]:
subs?
Object `subs` not found.

In [72]:
yps=yp.subs([(g,32),(k,1),(m,3),(v0,100),(th,pi/2)])
yps
Out[72]:
$$-96 + 196 e^{- \frac{t}{3}}$$
In [59]:
plot(yps,(t,0,5))
Out[59]:
<sympy.plotting.plot.Plot at 0x10680e5d0>
In [70]:
ys=y.subs([(g,32),(k,1),(m,3),(v0,100),(th,pi/2)])
ys
Out[70]:
$$- 96 t + 588 - 588 e^{- \frac{t}{3}}$$
In [71]:
plot(ys,(t,0,5))
Out[71]:
<sympy.plotting.plot.Plot at 0x106938650>
In [73]:
solve(yps,t)
Out[73]:
$$\begin{bmatrix}- 3 \log{\left (24 \right )} + 3 \log{\left (49 \right )}\end{bmatrix}$$
In [77]:
expand((2*x - 1)*(x + 1))
Out[77]:
$$2 x^{2} + x - 1$$
In [83]:
solve(ln(2*x) - ln(x-2),x)
Out[83]:
$$\begin{bmatrix}-2\end{bmatrix}$$
In [84]:
solve(ln(x) + ln(2*x+1), x)
Out[84]:
$$\begin{bmatrix}\frac{1}{2}\end{bmatrix}$$
In [86]:
(log(1/2)/5600).evalf(10)
Out[86]:
$$-0.0001237762822$$
In [97]:
soln=solve(x*exp(x) - 50, x)
soln[0].evalf(20)
Out[97]:
$$2.8608901779822108668$$
In [99]:
2.86089*exp(2.86089)
Out[99]:
$$49.9999879902819$$
In [110]:
solve(x*3**x-10,x)[0].evalf()
Out[110]:
$$1.6436099455207$$
In [111]:
plot(1/sqrt(cos(x)),(x,0,2*pi))
Out[111]:
<sympy.plotting.plot.Plot at 0x10b4dd190>
In [7]:
f = x*sqrt(x**2+1)
fp = simplify(diff(f,x))
fp
Out[7]:
$$\frac{2 x^{2} + 1}{\sqrt{x^{2} + 1}}$$
In [8]:
fpp = simplify(diff(fp,x))
fpp
Out[8]:
$$\frac{x \left(2 x^{2} + 3\right)}{\left(x^{2} + 1\right)^{\frac{3}{2}}}$$
In [10]:
soln=(5*e + 2)/(e - 1)
In [11]:
log(soln + 2) - log(soln - 5)
Out[11]:
$$1.0$$
In [13]:
x, y, t, r = symbols('x y t r')
int=integrate(5/sqrt(25-r**2),(r,0,sqrt(25/2)))
In [15]:
2*pi*int.evalf()
Out[15]:
$$7.85398163397448 \pi$$
In [16]:
solve(3*exp(3*x+4)-120,x)
Out[16]:
$$\begin{bmatrix}\log{\left (\frac{2 \sqrt[3]{5}}{e^{\frac{4}{3}}} \right )}, & \log{\left (- \frac{\sqrt[3]{5}}{e^{\frac{4}{3}}} - \frac{\sqrt{3} i}{e^{\frac{4}{3}}} \sqrt[3]{5} \right )}, & \log{\left (- \frac{\sqrt[3]{5}}{e^{\frac{4}{3}}} + \frac{\sqrt{3} i}{e^{\frac{4}{3}}} \sqrt[3]{5} \right )}\end{bmatrix}$$
In [30]:
ans = diff((1+x)/(1+exp(x)),x)
In [31]:
ans.subs(x,0)
Out[31]:
$$\frac{1}{4}$$
In [32]:
ans
Out[32]:
$$- \frac{\left(x + 1\right) e^{x}}{\left(e^{x} + 1\right)^{2}} + \frac{1}{e^{x} + 1}$$
In [33]:
a, b, t = symbols('a b t')
h = -a*exp(-t/3) - b*t + a
diff(h,t)
Out[33]:
$$\frac{a}{3} e^{- \frac{t}{3}} - b$$
In [35]:
Out[33].subs([(a,738),(b,96)])
Out[35]:
$$-96 + 246 e^{- \frac{t}{3}}$$
In [36]:
solve(Out[35],t)
Out[36]:
$$\begin{bmatrix}- 3 \log{\left (16 \right )} + 3 \log{\left (41 \right )}\end{bmatrix}$$
In [41]:
h = -738*exp(-t/3) - 96*t + 738
hp = diff(h,t)
soln=solve(hp,t)
height = h.subs(t,soln[0])
print soln[0], soln[0].evalf(), height, height.evalf()
-3*log(16) + 3*log(41) 2.82295003339358 -288*log(41) + 450 + 288*log(16) 178.996796794216

In [45]:
df=simplify(diff(x**3/(x**2-25),x))
ddf=simplify(diff(df,x))
In [46]:
ddf
Out[46]:
$$\frac{50 x \left(x^{2} + 75\right)}{x^{6} - 75 x^{4} + 1875 x^{2} - 15625}$$
In [2]:
limit(sqrt(x**2+6*x+2)-x,x,oo)
Out[2]:
$$3$$
In [4]:
limit(x**(7*sin(x)),x,0,'+')
Out[4]:
$$1$$
In [5]:
limit(x**4/(sin(x)-x),x,0)
Out[5]:
$$0$$
In [6]:
limit(sin(10*x)/tan(3*x),x,0)
Out[6]:
$$\frac{10}{3}$$
In [7]:
limit((10**x-3**x)/x,x,0)
Out[7]:
$$- \log{\left (3 \right )} + \log{\left (10 \right )}$$
In [8]:
limit((1-6/x)**x,x,oo)
Out[8]:
$$e^{-6}$$
In [9]:
limit((1-cos(6*x))/(1-cos(3*x)),x,0)
Out[9]:
$$4$$
In [11]:
limit(4**x - 3**x - 10*(x**2-1),x,1)
Out[11]:
$$1$$
In [12]:
limit(10*x*exp(1/x) - 10*x,x,oo)
Out[12]:
$$10$$
In [3]:
r, t = symbols('r t')
integrate(r**2 * cos(t)**2 * (1-r**2) * r, (r,0,1), (t,0,2*pi))
Out[3]:
$$\frac{\pi}{12}$$
In [8]:
x = symbols('x')
f = 2**(-x)*(x-10)**3
fp=diff(f,x)
factor(fp)
fpp=diff(fp,x)
factor(fpp)
Out[8]:
$$2^{- x} \left(x - 10\right) \left(x^{2} \log^{2}{\left (2 \right )} - 20 x \log^{2}{\left (2 \right )} - 6 x \log{\left (2 \right )} + 6 + 60 \log{\left (2 \right )} + 100 \log^{2}{\left (2 \right )}\right)$$
In [14]:
fpp_approx=Out[8].subs(log(2),log(2.0))
In [15]:
fpp_approx
Out[15]:
$$2^{- x} \left(x - 10\right) \left(0.480453013918201 x^{2} - 13.7679433617237 x + 95.6341322254169\right)$$
In [17]:
solve(0.48*x**2-13.77*x+95.63,x)
Out[17]:
$$\begin{bmatrix}11.7914966043057, & 16.8960033956944\end{bmatrix}$$
In [22]:
fp_crit=solve(fp,x)
In [24]:
fp_crit[1].evalf()
Out[24]:
$$14.3280851226669$$
In [26]:
factor(fp)
Out[26]:
$$- 2^{- x} \left(x - 10\right)^{2} \left(x \log{\left (2 \right )} - 10 \log{\left (2 \right )} - 3\right)$$
In [30]:
r, R = symbols('r R')
V = pi*R**2/3 * sqrt(r**2 - R**2)
dV = diff(V,R)
solve(dV,R)
Out[30]:
$$\begin{bmatrix}0, & - \frac{\sqrt{6} r}{3}, & \frac{\sqrt{6} r}{3}\end{bmatrix}$$
In [33]:
180/pi*2*pi*(1-sqrt(2/3.0)).evalf()
Out[33]:
$$66.0612308660186$$
In [35]:
simplify(V.subs(R,r*sqrt(6)/3))
Out[35]:
$$\frac{2 \pi}{27} \sqrt{3} r^{2} \sqrt{r^{2}}$$
In [14]:
from numpy import *

x = symbols('x')
f = x**3 + x - 2
fp = diff(f,x)

xi = [2]

ii = arange(0,10,1)

for i in {1,2,3,4,5,6}:
    xi.append(xi[-1] - f(xi[-1])/fp(xi[-1]))
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-14-c35f3b275e7f> in <module>()
      3 x = symbols('x')
      4 f = x**3 + x - 2
----> 5 fp = diff(f,x)
      6 
      7 xi = [2]

/Users/gary/.virtualenvs/scipy/lib/python2.7/site-packages/numpy/lib/function_base.pyc in diff(a, n, axis)
    982     if n == 0:
    983         return a
--> 984     if n < 0:
    985         raise ValueError(
    986                 "order must be non-negative but got " + repr(n))

/Users/gary/.virtualenvs/scipy/lib/python2.7/site-packages/sympy/core/relational.pyc in __nonzero__(self)
    109 
    110     def __nonzero__(self):
--> 111         raise TypeError("symbolic boolean expression has no truth value.")
    112 
    113     __bool__ = __nonzero__

TypeError: symbolic boolean expression has no truth value.
In [23]:
t = symbols('t')
P = 10000*exp(0.55*t)
dP = diff(P,t)
t0 = solve(dP - 34000, t)

print("P(5) = " + str(P.subs(t,5)))
print("P'(5) = " + str(dP.subs(t,5)))
print("t0 = " + str(t0[0]))
print("P(t0) = " + str(P.subs(t,t0[0])))
P(5) = 156426.318841882
P'(5) = 86034.4753630349
t0 = 3.31202260432316
P(t0) = 61818.1818181818

In [52]:
t, T, k = symbols('t T k', real=True)

T0 = 70
E = 325

T = (T0 - E)*exp(k*t) + E

ks = solve(T.subs(t,10)-100.0, k)[0]
print("ks = " + str(ks))

Ts = T.subs(k,-0.0125)
print(Ts)
print([(time,Ts.subs(t,time)) for time in {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120}])
ks = -0.0125163142954006
-255*exp(-0.0125*t) + 325
[(100, 251.941276800652), (70, 218.700184981980), (40, 170.334681773278), (10, 99.9632898409282), (110, 260.525903069790), (80, 231.190742501282), (50, 188.508335727657), (20, 126.405800316792), (120, 268.101809162150), (90, 242.213620823621), (60, 204.546529051041), (30, 149.741233908302)]

In [79]:
t, P, k = symbols('t P k', real=True)
ts = symbols('ts', real=True)

M = 1000.0
P0 = 8.0

P = M*P0*exp(k*t) / (M + P0*(exp(k*t) - 1))

dP = simplify(diff(P, t))

ks = solve(P.subs(t,12.0)-80.0,k)[0]
print(ks)

print(P.subs(k,ks))

print(P.subs([(t,12),(k,ks)]))
#plot(dP.subs(k,ks),(t,0,60))
#plot(P.subs(k,ks), (t,0,60))

print(dP)

#ts = solve(dP.subs(k,ks)-40, t)
#print(ts)
0.198161210852986
8000.0*exp(0.198161210852986*t)/(8.0*exp(0.198161210852986*t) + 992.0)
80.0000000000000
7936000.0*k*exp(k*t)/(8.0*exp(k*t) + 992.0)**2

In []: